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Exploring electroencephalography 
with a model inspired by quantum 
mechanics
Nicholas J. M. Popiel1,2, Colin Metrow1, Geoffrey Laforge3, Adrian M. Owen3,4,5, 
Bobby Stojanoski4,6,7 & Andrea Soddu1,3,7*

An outstanding issue in cognitive neuroscience concerns how the brain is organized across different 
conditions. For instance, during the resting-state condition, the brain can be clustered into reliable 
and reproducible networks (e.g., sensory, default, executive networks). Interestingly, the same 
networks emerge during active conditions in response to various tasks. If similar patterns of neural 
activity have been found across diverse conditions, and therefore, different underlying processes and 
experiences of the environment, is the brain organized by a fundamental organizational principle? 
To test this, we applied mathematical formalisms borrowed from quantum mechanisms to model 
electroencephalogram (EEG) data. We uncovered a tendency for EEG signals to be localized in anterior 
regions of the brain during “rest”, and more uniformly distributed while engaged in a task (i.e., 
watching a movie). Moreover, we found analogous values to the Heisenberg uncertainty principle, 
suggesting a common underlying architecture of human brain activity in resting and task conditions. 
This underlying architecture manifests itself in the novel constant  KBrain, which is extracted from the 
brain state with the least uncertainty. We would like to state that we are using the mathematics of 
quantum mechanics, but not claiming that the brain behaves as a quantum object.

An important but outstanding issue in contemporary cognitive neuroscience is understanding the organizational 
properties of neural activity. For instance, is there a fundamental structure to the spatial–temporal patterns neural 
brain activity across different conditions? One common approach used to address this question is to examine the 
brain at “rest”. Measures such as functional connectivity, independent component analysis and graph theoretic 
metrics, have been applied to data recorded using different imaging techniques (e.g., functional magnetic reso-
nance imaging (fMRI) and electroencephalography (EEG)), to cluster brain areas that exhibit similar activity 
patterns. Numerous studies have shown that brain activity during “rest” can be grouped into distinct networks 
 across1,2; such as sensory (visual and auditory), default mode, executive, salience, and attentional (ventral and 
dorsal) networks that have been reliably reproduced across thousands of  participants3, and are predictive of 
phenotypic measures like cognition and clinical  diagnoses4–6. These results suggest these networks may be an 
intrinsic aspect of neural activity.

Indeed, the same set of structured patterns of neural activity have been found during "active" states, such as, 
while completing different  tasks7–9. For instance, there is a high degree of correspondence between networks 
extracted during rest and those extracted during tasks measuring  sensorimotor10,11 and higher-level cognitive 
abilities (i.e., working memory)12,13. Even completing a task as complicated as following the plot of a movie 
elicits the same network architecture as observed in the resting  brain14. The correspondence between task and 
rest-based networks is so strong that task-based fMRI network activity can be predicted from the resting  state15, 
and rest-task network pairs can be identified at the individual  level16. Together, these results suggest that rest 
and task-based patterns of brain activity likely share a similar underlying neural architecture, despite distinct 
experiences and cognitive  processes17.

There are, however, important differences between the patterns of brain activity elicited during rest and 
task-based paradigms, and the set of experiences and cognitive processes associated with  each18. For instance, 
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the presence or absence of a task is accompanied by increases in variability across different scales including 
neuronal firing rates changes in field  potentials19,20, variation in fMRI blood oxygen level dependent (BOLD 
signal)21, and in EEG frequency  bands22. Furthermore, through transcranial direct current stimulation (tDCS) 
it has been shown that frontal-lobe stimulation increases one’s proclivity to mind  wander23,24. Importantly, these 
differences are associated with changes in properties of neural activity but not in changes in the underlying 
neural architecture.

Is there a way to identify the shared neural architecture underlying the cognitive processes associated with rest 
and active states while also quantifying how these processes diverge from that shared architecture of neural activ-
ity? In this paper, we applied mathematical methods analogous to those of quantum mechanics, and the concept 
of phase space to EEG recorded during rest and movie-watching to extract spatial and transitional properties of 
dynamic neural activity. Quantum mechanics was developed to describe the dynamics of the subatomic world 
in terms of probability amplitudes and densities of states. Quantum systems (in the Schrodinger formulation of 
quantum mechanics) are described by wavefunctions which square to a probability distribution leading to the 
loss of local determinism and the Heisenberg uncertainty principle (for an overview/intro to the subject  see25). 
This uncertainty principle places a fundamental limit on the location and the momentum of a point  particle26. 
In essence, if the position of a particle is known there is an underlying uncertainty in its momentum (one cannot 
precisely say how fast it is going) and vice versa. In addition to the adaptation of the wavefunction approach to 
quantum mechanics in this paper, we also employed a phase space model. Phase space is a widely used tool in 
the study of dynamical systems, where the positional variables are paired with their conjugate momenta which 
establishes a multidimensional space that describes all possible configurations of the given system. This space 
spans the entire range of states that a system can exist in, each point (in this hyper-space) represents a single state 
of the system. Phase space and its assorted formalisms are a classical concept, and we simply use it as another 
tool for analysing the EEG data. Herein, the mathematical methods of quantum mechanics are applied to EEG 
data to extract a proxy to phase space. This quasi-quantum approach naturally generates the concepts of ‘average’ 
position, ‘average’ momentum and culminates in an analogous Heisenberg uncertainty principle.

In this paper, we posit that using mathematical tools drawn from quantum mechanics, an underlying pattern 
representative of task and resting brain activity can be realised, in which differences across conditions are appar-
ent, but culminates in a task independent constant value. It is important to note that we are not claiming that the 
brain behaves as a quantum object as some  believe27–30. Rather, we have employed some of the analytical tools 
from the Schrodinger formulation of quantum mechanics to the brain with the aim of gaining new insight into 
resting and task-based brain dynamics. Not only does devising this model probe questions into the functions 
of the brain, but it also provides a novel approach to analysing the myriad of data available in neuroscience.

Results
In this paper, we adapted the probability amplitudes of quantum mechanics to define new metrics for examining 
EEG data—the ‘average position’ and ‘average momentum’ of the EEG signal. These were constructed from our 
definition of ‘brain states’ based on the quasi-quantum model. This allowed us to ascertain the frequency with 
which unique brain regions are entered by the pseudo-wavefunction, as well as explore the average-valued phase 
space. Finally, an analogous uncertainty relationship to that of quantum mechanics was established, with the full 
mathematical derivation described in the methods.

Average values. The ‘average position’ of the EEG data was first extracted performing a Hilbert transform 
of the pre-processed time courses, and then applying a normalization constraint. Typically, the Hilbert trans-
formed data is used to generate a metric of power dispersion or to extract the phase of the  signal31–33. Instead, we 
imposed a new normalization condition, thereby creating an analogy to the wavefunctions of quantum mechan-
ics. Denoting the Hilbert transformed time course of the jth electrode as Ψj, this is equivalent to

With i =
√
−1 . We then imposed the normalization condition,

The summation extends to 92, corresponding to the 92 electrodes selected from the original 129 on the head 
cap (channels removed from the face and neck for this analysis). This normalization constraint allowed us to 
define the probability at time t of the jth electrode as

With the * denoting complex  conjugation25. We then can describe each moment in time as a ‘brain state’ that 
is fully described (in the context of this model) through the ‘wavefunction’. This ‘brain state’ uniquely specifies 
the EEG signal, and hence the dynamics of interest, at each moment in time. Using this definition of probability, 
we defined two average quantities of interest. The average position and momentum are given explicitly by,
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(
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With the same holding true for y. These two equations are how we create our quasi-quantum mechanical 
analogues. The second equation is an extension of Ehrenfest’s theorem, relating the average momenta of a par-
ticle to the time derivative of its average position. Where we have assumed a Hamiltonian with only a spatially 
dependent potential. Note that as the positions are fixed in space (positions of the electrodes) only the probability 
changes in time. Throughout this paper the mass m has been taking to be unity for both the x and y momenta. 
Each of the 92 electrodes were projected onto the horizontal plane, thus the jth electrode was described by one 
unique (xj, yj) point.

We first examined this model by grouping the 92 electrodes into eight regions on the scalp: Anterior L/R, 
Posterior L/R, Parietal L/R, Occipital L/R and the probabilities of each electrode in the region were summed 
to give a region-level probability. Figure 1A shows the (xj, yj) locations of each electrode, with different colours 
representing each of the eight groups. Figure 1B displays the frequency of entering each region, grouped by the 
four task conditions and two resting conditions. This reflects the normalized count of regional probabilities 
integrated in time. We found that each anterior region was entered more frequently while at rest than when 
subjects were engaged in either movie. Specifically, the anterior left and right regions had significant within 
stimulus change, with P < 0.001 (Tukey adjusted) for the Taken Rest—Taken, Taken Rest—Taken Scrambled, BYD 
Rest—BYD and BYD Rest—BYD Scrambled. This is in line with Axelrod and colleagues’ findings which showed 
activation in the frontal region was associated with mind  wandering23,24. We found frequency suppression in 
posterior regions, and an increase in anterior frequency in rest compared to the stimulated conditions, consist-
ent with fMRI studies showing increased activation in the posterior cingulate cortex, and the medial prefrontal 
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Figure 1.  (A) Electrode locations for each of the 92 electrodes on the Electrical Geodesics Inc. headcap. 
Electrodes were projected onto a horizontal plane with the nose in the positive y direction. Electrodes have 
been colour-coded to display the constituent parts of the 8 groups for the frequency analysis, namely, occipital 
left (blue)/right (orange), parietal left (green)/right (red), posterior left (purple)/right (brown) and anterior 
left (pink)/right (grey). (B) Histograms representing the frequency of entering each region fG are displayed for 
the six conditions tested. Significant within stimulus change is present between each of the Anterior Left and 
Right regions when comparing the pre-stimulus rest and the respective stimulated condition (P < 0.001, Tukey 
adjusted.). Error bars display the 1 standard deviation confidence interval.
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cortex during  rest22,24,34–37. Thus, suggesting our model captures the frontal tendency associated with the brain 
activity while at rest.

Phase space. We also explored the average-valued phase space of this system. The phase space for each 
subject was plotted as the average position and momentum along the x direction 

(

〈x(t)〉,
〈

px(t)
〉)

 or as the aver-
age position and momentum along the y direction 

(〈

y(t)
〉

,
〈

py(t)
〉)

 . Figure 2 shows the centroids of the phase 
space scatter plots for each subject with an ellipse representing the one standard deviation confidence interval. 
Note that values are only reported for the intact stimuli as an analysis of variance shows the scrambled and intact 
movies are indistinguishable in phase space (P > 0.85, Tukey adjusted). Figure 2A and B show the projection of 
the phase space centroid onto the plane spanned by x and px for “Bang! You’re Dead” and “Taken” respectively, 
and Fig.  2C and D ( y,py ) plane. The average position along the y axis 

(〈

y
〉)

 for the intact stimulus (“BYD” 
and “Taken”) and their scrambled forms are significantly different from the pre-stimulus rest counterparts with 
P < 0.001 (Tukey adjusted) whereas the task-positive and resting centroids are indistinguishable in the x plane 
(P > 0.05, Tukey adjusted). The averages of the group are reported in Table 1 along with their standard devia-
tions. These values are the averaged value of the centroids (average of the within stimuli centre points in Fig. 2) 
for the respective position/momenta within each stimulus level. As also seen in Fig. 2C and D, there is a striking 
difference of one order of magnitude for 

〈

y
〉

 between the resting and task conditions, yet no marked differences 
in 〈x〉 , 

〈

px
〉

 , or 
〈

py
〉

.
This analysis revealed two notable findings. First, there was a lack of significant differences in the momenta 

of the brain along the x and y direction. Second, the averages in momenta were not significantly different from 0 
at the group level. The positive or negative momenta come from the competing time derivative of the probability 
and location of the electrode. Since the momenta average to 0, there is an equal number of anterior and posterior 
electrodes with both increases and decreases in probability.

Further, we examined changes in the probability values in both resting and active states. Animations of the 
probability distributions are present in Supplementary Material 1. In these animations, the differences in rest 
and task are apparent through the evolution of probability in time.

Figure 2.  Mean phase space centroids for each subject. Ellipses represent the 1 standard deviation confidence 
interval. Centroids for the scrambled stimuli were omitted as they are indistinguishable from intact stimuli 
(P > 0.85) (A) Centroids for “Bang! You’re Dead” along the x direction. (B) Centroids for “Taken” along the x 
direction. (C) Centroids for “Bang! You’re Dead” along the y direction. (D) Centroids for “Taken” along the y 
direction. Differences are only apparent in the y direction (P < 0.001, Tukey adjusted) indicative of the higher 
level of anterior activation as noted in Fig. 1.
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Uncertainty principle. Despite the confirmation of previous neuroscientific results, and the apparent suc-
cess of our quasi-quantum model, our research question as posed above remains only half answered. Using this 
model, we noted differences in the probability distributions and the phase space centroids in rest when com-
pared to task. However, we still sought a parameter from the model that would remain the same in rest and task. 
To this end, we defined an analogous Heisenberg uncertainty principle of the form,

Table 2 displays the values of this constant ( KBrain ) acquired in all conditions, as well as the maximum value, 
mean value, and standard deviation. We found that this quasi-quantum model leads to a constant minimum value 
across �x(t)�px(t) and �y(t)�py(t) of 0.78± 0.41 cm2

4 ms with (T = 0, P = 1). Note the unit of cm
2

4 ms is a result of the 
EEG being sampled at 250 Hz and the mass being taken to be unity. Furthermore, the average value and standard 
deviation of these quantities remains consistent across conditions with an average value of 9.3± 4.4 cm2

4 ms (T = 0, 
P = 1) and a standard deviation of 18± 29 cm2

4 ms (T = 0, P = 1). Notably, the maximum value does vary between 
conditions, with the largest value occurring while subjects watched the intact clip from Bang! You’re Dead. Despite 
the average position of the signal along the y direction being different in rest than during a task (P < 0.001), the 
quasi-quantum mathematical methodology leads to a constant uncertainty value. Quite remarkably, the values 
in the table display that the average uncertainty and minimum uncertainty is the same across different condi-
tions, despite maxima varying by over two orders of magnitude. Thus, giving further credence to the idea that 
this uncertainty relation captures the similarities of the brain across the vastly different conditions. Figure 3 
displays the probability distribution at the time corresponding to the minimum in uncertainty for both x and y.

Discussion
In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity 
in the brain during active and resting conditions, and whether similar underlying network properties exist. We 
found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic 
structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patterns of 
activity along with transitions in activity across the scalp. We found more anterior activity during rest relative 
to the movie watching, in both amplitude and phase space. This finding is in line with previous results showing 
increased activation in anterior region during  rest20–22,34,37,38. Moreover, by normalizing the Hilbert transformed 
EEG signals and extracting average values akin to those of the wavefunction formulation of quantum mechanics, 
we were able to compute uncertainty in the ‘position’ and ‘momentum’ during rest and movie-watching, which 
is set by the new constant  KB = 0.78± 0.41 cm2

4 ms.

(5)�x(t)�px(t) ≥ KBrain

Table 1.  Group averages of the centroids. Significant differences are only noted for the rest acquired before 
Taken and Bang! You’re Dead when comparing the average y location to either of their task counterparts 
(scrambled and intact stimulus).

Stimulus 〈x〉
〈

y
〉 〈

px
〉 〈

py
〉

Taken (−1.4± 5.8)× 10
−1 (2.4± 8.0)× 10

−1 (−5.8± 27.0)× 10
−2 (−1.0± 4.1)× 10

−1

Taken Scrambled (−7.7± 35.0)× 10
−2 (1.1± 9.3)× 10

−1 (4.1± 13.0)× 10
−2 (6.3± 35.0)× 10

−2

Bang! You’re Dead (1.2± 4.7)× 10
−1 (3.5± 74.0)× 10

−2 (2.6± 33.0)× 10
−2 (−3.0± 42.0)× 10

−1

Bang! You’re Dead Scrambled (1.4± 5.7)× 10
−1 (−2.6± 7.5)× 10

−1 (−1.5± 2.8)× 10
−1 (−5.5± 53.0)× 10

−2

Rest (Pre-Taken) (−1.3± 4.6)× 10
−1 (2.0± 1.4)× 10

0 (9.1± 19.0)× 10
−2 (−6.3± 7.3)× 10

−1

Rest (Pre-BYD) (1.1± 66.0)× 10
−3 (1.9± 1.2)× 10

0 (1.0± 26.0)× 10
−2 (−4.3± 7.5)× 10

−1

Table 2.  Various values extracted from the time courses of the products �x(t)�px(t) and �y(t)�py(t). 
Considering the minimum value these products reach for each subject, we see a constant value in both x and y 
of 0.78± 0.41

cm
2

4 ms
 , an average value of the 9.3± 4.4

cm
2

4 ms
 , and a constant standard deviation of 18± 29

cm
2

4 ms
. The 

unit of cm
2

4 ms
 arises from the sampling of 250 Hz. Maximum values differ across stimulation. Values are reported 

as mean across subjects plus or minus 1 standard deviation.

Stimulus

Minimum Maximum Average Standard Deviation

�x�px �y�py �x�px �y�py �x�px �y�py �x�px �y�py

Taken (7.0± 2.1)× 10
−1 (7.2± 1.8)× 10

−1 (1.9± 1.0)× 10
3 (1.4± 0.8)× 10

3 (8.2± 2.2)× 10
0 (8.2± 2.2)× 10

0 (1.4± 0.4)× 10
1 (1.3± 0.4)× 10

1

Taken Scrambled (6.4± 2.6)× 10
−1 (6.8± 2.1)× 10

−1 (1.7± 1.2)× 10
3 (2.1± 2.2)× 10

3 (8.1± 1.9)× 10
0 (7.8± 2.0)× 10

0 (1.4± 0.4)× 10
1 (1.4± 0.7)× 10

1

Bang! You’re Dead (7.6± 4.9)× 10
−1 (7.5± 3.1)× 10

−1 (0.1± 3.1)× 10
5 (0.7± 1.4)× 10

4 (9.4± 6.7)× 10
0 (8.3± 3.6)× 10

0 (4.1± 8.9)× 10
1 (2.7± 3.9)× 10

1

Bang! You’re Dead 
Scrambled (7.4± 3.2)× 10

−1 (7.1± 2.9)× 10
−1 (2.5± 1.2)× 10

3 (2.5± 1.6)× 10
3 (9.3± 5.1)× 10

0 (8.6± 4.4)× 10
0 (1.6± 0.7)× 10

1 (1.5± 0.8)× 10
1

Rest (Pre-Taken) (9.7± 4.2)× 10
−1 (1.1± 0.6)× 10

0 (3.5± 3.1)× 10
2 (3.5± 1.7)× 10

2 (9.6± 2.1)× 10
0 (1.3± 0.4)× 10

1 (1.5± 0.8)× 10
1 (1.9± 0.7)× 10

1

Rest (Pre-BYD) (6.3± 3.7)× 10
−1 (8.6± 6.1)× 10

−1 (3.7± 2.0)× 10
2 (4.3± 2.5)× 10

2 (8.7± 3.3)× 10
0 (1.2± 0.6)× 10

1 (1.4± 0.5)× 10
1 (1.9± 0.8)× 10

1
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It is alluring to associate the constant related to the ‘position’ and ‘momentum’ of neural activity to a funda-
mental principle, such as, the Heisenberg uncertainty principle. However, it is still unclear what this uncertainty 
means. It could imply limits to the degree to which the brain is accessible; increasing information about the 
precise location of the brain state (as described by our quasi-quantum ‘wavefunctions’) will produce a bigger 
uncertainty about where it will be at a subsequent time. These results offer an interesting perspective on the 
link between neural function and cognitive processes. For instance, as the ‘wavefunction’ becomes localized in 
space along a train of thoughts, we become distracted to increase the uncertainty, which may explain why minds 
wander and thoughts are fleeting?

Is the  KB value we found constant across different stimulus conditions, and independent of the number 
of electrodes used to acquire the data? To test this, we down sampled the EEG electrodes from 92 to 20 and 
performed the same analysis as in the main text. In line with 92 channels, we found the anterior tendency in 
rest, but we found reducing the electrodes to 20 resulted in a different constant  KB = 0.03± 0.02 cm2

4 ms (See Sup-
plementary Material). This demonstrates that the model is able to capture the differences of rest/task, but a 
montage-dependent normalisation condition may need to be introduced.

It is important to note that uncertainty values of this form are inherent to any Fourier conjugate variables, 
as a value spreads out in one variable, it localizes in the other. This suggests that after defining the square of the 
Hilbert transformed EEG electrode time course to be the probability and imposing the properties of a Hilbert 
space onto the electrode signals, an uncertainty values can be extracted. In quantum mechanics, this uncertainty 
sets the limit for the scales that cannot be observed. This approach was inspired from the need in neuroscience 
for novel models to help interpret neuroimaging data. While this is an interesting methodological step forward, 
we still must determine if the observed uncertainty in the EEG data is supported by a new fundamental principle 
like in quantum mechanics, or if it is just the outcome of having built two new Fourier conjugate variables from 
the EEG signal.

Further work must be done to explore this constant with respect to the rich taxonomy of tasks and stimuli 
and varying states of consciousness that are routinely used in cognitive neuroscience. This methodology could be 

Figure 3.  Probability maps corresponding to the least uncertain time point for each of the six experimental 
conditions. (A) The probabilities which lead to the minimum uncertainty as defined by the minimum of 
�x(t)�px(t) . (B) The probabilities which lead to the minimum uncertainty as defined by the minimum of 
�y(t)�py(t) . One subject is displayed for all Taken stimuli, and another for all Bang! You’re Dead stimuli.
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extended into fMRI, where the BOLD time courses could be Hilbert transformed creating a three-dimensional 
analogue of the EEG model presented in this paper.

Ultimately, this paper presented a novel methodology for analysing EEG data. Normalizing the data and 
treating it as a probability amplitude led to parameters that changed with the presence or lack of stimulus, while 
simultaneously establishing a constant value independent of stimulus. We have successfully applied a math-
ematical framework based on the formalisms of quantum mechanics to the resting and task paradigm in EEG 
(without claiming the brain is a quantum object). As neuroscience continues to evolve, the analytic tools at its 
disposal must also progress accordingly. We hope that this analytical tool, along with the advances in modelling 
and machine learning will aid in our understanding of the nature of consciousness.

Methods
Data acquisition. Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the 
University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior 
to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Eth-
ics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research 
was performed in accordance with the relevant guidelines/regulations and in accordance with the Declaration 
of Helsinki.

Two suspenseful movie clips were used as the naturalistic stimuli in this study. A video clip from the silent film 
“Bang! You’re Dead” and an audio excerpt from the movie “Taken” were shown to 13 and 15 subjects respectively 
in both their original intact and scrambled forms. Prior to the two acquisitions, a section of rest was acquired 
where the subjects were asked to relax, without any overt stimulation. Stimulus presentation was controlled with 
the Psychtoolbox plugin for  MATLAB39–41 on a 15″ Apple MacBook Pro. Audio were presented binaurally at a 
comfortable listening volume through Etymotics ER-1 headphones.

EEG data were collected using a 129-channel cap (Electrical Geodesics Inc. [EGI], Oregon, USA). Electrode 
impedances were kept below 50 kΩ with signals sampled at 250 Hz and referenced to the central vertex (Cz). 
Using the EEGLAB MATLAB  toolbox42, noisy channels were identified and removed, then interpolated back 
into the data. A Kolmogorov–Smirnov (KS) test on the data was used to identify regions that were not Gaussian. 
Independent components analysis (ICA) was then used to visually identify patterns of neural activity character-
istic of eye and muscle movements which were subsequently removed from the data. EEG pre-processing was 
performed individually for each subject and condition.

Of the two movie clips tested, the first was an 8-min segment from Alfred Hitchcock’s TV silent movie “Bang! 
You’re Dead”. This scene portrays a 5-year-old boy who picks up his uncle’s revolver. The boy loads a bullet into 
the gun and plays with it as if it were a toy. The boy (and viewer) rarely knows whether the gun has a bullet in 
its chamber and suspense builds as the boy spins the chamber, points it at others, and pulls the trigger. As an 
alternative to visual stimulation, a 5-min audio excerpt from the movie “Taken” was also used. This clip portrays 
a phone conversation in which a father overhears his daughters’ kidnapping.

Furthermore, two “scrambled” control stimuli were used—one for each movie. This separates the neural 
responses elicited by the sensory properties of watching or listening to the movies from those involved in follow-
ing the plot. The scrambled version of “Bang! You’re Dead” was generated by isolating 1 s segments and pseudor-
andomly shuffling the segments, thereby eliminating the temporal coherence of the  narrative14,43. The scrambled 
version of “Taken” was created by spectrally rotating the audio, thus rendering the speech  indecipherable43,44. 
The scrambled movie clips were presented before the intact versions to prevent potential carry-over effects of 
the narrative. Prior to subjects watching/listening to the scrambled stimulus a short segment of resting EEG 
was acquired.

Model. Each of the j electrodes is described by an ordered pair (xj, yj, zj) in 3-dimensional space. To complete 
this analysis, the electrodes were first projected onto the (x, y) plane, removing the depth of the head. Figure 1A 
shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of 
the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq. (2). 
A probability was defined in this electrode-position space as the square of the Hilbert transformed time course 
(Eq. 3), analogous to the wavefunctions of quantum mechanics. Eight regions Anterior L/R, Posterior L/R, Pari-
etal L/R, Occipital L/R) were then defined by grouping the 92 electrodes, and the frequencies of entering each 
region fG were obtained by summing the probabilities electrodes within the group, then integrating in time.

where each of the eight groups denoted by the subscript G have a different number of constituent electrodes N. 
In the occipital left and right there are 10 electrodes each, in the parietal left and right there are 17 electrodes 
each, in the posterior left and right there are 10 and 11 electrodes respectively, and in the anterior left and right 
there are 8 and 9 electrodes respectively.

Upon getting the group level frequencies average values for position and momentum were calculated using 
Eqs. (4) and (5) (with identical expressions for y). Finally, to ascertain our analogous uncertainty principle, we 
sought expressions of the form

(6)ProbG(t) =

N
∑

k=1

�∗
k (t)×�k(t)

fG =
1

T

T
∑

t=1

ProbG(t)
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The expression for �x can be readily applied to the probabilities and positions as defined above, resulting in 
the first term given by

And the second term given by the square of Eq. (4). The second term of �px is given by the square of Eq. (5), 
but the first term is more nuanced. This is owing to the complex number returned when acting the derivative 
operator twice on the probability. To overcome this, Fourier transforms were used to change Eq. (5) into the 
momentum basis which then allowed for the efficient calculation of 

〈

p2x(t)
〉

 . Denoting P̃j(t) as the momentum-
space probability obtained through a 2-dimensional, non-uniform Fourier transform of the position space 
pseudo-wavefunction, Eq. (5) can be rewritten as,

Leading to the first term in the �px expression to be written as,

The FINUFFT python wrapper was used to take the Fourier transform using a type 3, 2d non-uniform 
 FFT45,46, and the minimum value in time of the uncertainty relation was found. Points in momentum space were 
sampled on px ∈ [−4, 4] and py ∈ [−4, 5] along with the two additional points (− 5, − 4) and (− 4, − 5). Figure 4 
shows the position and momentum probabilities respectively in their own basis. An animation showing how 
these evolve in time for the different conditions is presented in Supplementary Material 2.

To compute the values reported in Table 2, the corresponding value was found for each subject, and these 
were used to calculate the group average reported here.

(7)
�x =

√

〈

x2(t)
〉

− �x(t)�2

�px =

√

〈

p2x(t)
〉

−
〈

px(t)
〉2

(8)
〈

x2(t)
〉

=

92
∑

j=1

Pj(t)x
2
j

(9)
〈

px(t)
〉

=

92
∑

j=1

P̃j(t)pj

(10)
〈

p2x(t)
〉

= m2
92
∑

j=1

x2j

P̃j(t)

[

d

dt
Pj(t)

]2

x

y

px

py

A B

Figure 4.  (A) Probability distribution for a single subject in the position basis. (B) Momentum basis probability 
distribution for a single subject. The momentum values used for the Fourier transform are indicated by the point 
locations. Points are colour-/size-coded to represent the probability value at that location.
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